1. Wybieramy Prąd zwarciowy.

2. Wybieramy Schemat

3. Wybieramy przydzielony dla każdego numer zadania.

Otwórz plik ze schematem do	liczenia rozpływu	prądu zwa	rciow 💻	x
Szukaj w: 🚺 zwarcia	•	← 🗈 (* 📰 🔻	
Nazwa		Data mo	dyfikacji	
🚏 Zad 01		2005-04-	20 17:13	Ξ
🚏 Zad 02		2005-04-	20 17:13	
😼 Zad 03		2005-04-	20 17:13	
😼 Zad 04		2005-05-	11 20:28	
🚺 Zad 05		2005-05-	10 20:45	Ŧ
·			•	
Nazwa pliku: Zad 01			Otwórz	
Pliki typu: Plik ze schematem de	o liczenia rozpływu p	orąd 💌	Anuluj	
W układzie jak na rysunku obok wyznaczyć parametry prądu zwarciowego we wszystkich węzłach układu 220kV, przyjmując czas trwania zwarcia tz = 0,2s i tz = 0,7s.	()	4 4 L1	-G1 2 -T1 -T1 - 220kV L3)
Liczba węzłów - 6 węzłów zasilanych z systemów - 4	2-T2 0 33 5 10kV 2-G2)

4. Określamy liczbę węzłów sieci. (**Liczba węzłów sieci** – odczytywana ze schematu. Węzły oznaczone są cyfrą w kółku.)

🤣 Kreator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
Podaj liczbę węzłów sieci	
6	
PDalej >	🔰 🎇 Zamknij

5. Określamy liczbę węzłów zasilanych z systemów. (**Liczba węzłów zasilanych z systemów** – odczytywana ze schematu. Systemy reprezentowane są na schematach w postaci kwadratu i oznaczane są literą S i cyfrą.)

🞸 Krea	ator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
	Podaj liczbę węzłów zasilanych z systemów	
	4	
- <u> </u>		
	Acception of the second sec	🎇 Zamknij

6. Określamy dane węzłów zasilanych z systemów. (**Dane węzłów zasilanych z systemów** – odczytywane z Tabeli. Dla systemów podawana jest moc zwarciowa S_z [MVA]. Użytkownik na podstawie schematu sam wypełnia pozostałe dane patrząc na odpowiednie oznaczenia. W tabelce z danymi węzłów zasilanych z systemów liczba wierszy jest równa liczbie podanej we wcześniejszym etapie wprowadzania. Wiersze zostały ponumerowane i oznaczone tak jak systemy na schemacie literą S i odpowiednią cyfrą.

Ş	Kreator two	ator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego 🛛 🗖 🔍 🔀				
	—Podaj	dane w	ęzłów zasilanych z	systemów		
F	System	Nr węzła	Moc zwarciowa Sz [MVA]			
 -	S1	1	3000			
l t-	S2	3	4000			
	S3	4	2500			
	S4	6	600			
lt-						
F	1	<u>R</u> ozpoczni	j od nowa 🛛 🔍 🔧	(stecz Dalej 🔈	🎇 Zamknij	

7. Określamy liczbę węzłów zasilanych z generatorów. (Liczba węzłów zasilanych z generatorów – odczytana ze schematu. Generatory reprezentowane są na schematach w postaci okręgu i oznaczane są literą G i cyfrą).

🞸 Krea	ator tworzenia układu do oblicza	nia rozpływu i parametró	w prądu zwarciowego	
	Podaj liczbę wezłów za	silanych z generat	orów	
E				
	2			
	Z			
-				
-				
F	눱 <u>B</u> ozpocznij od nowa	🔇 <u>W</u> stecz	<u>D</u> alej 🔈	🎇 Zamknij

8. Określamy dane węzłów zasilanych z generatorów. (**Dane węzłów zasilanych z generatorów** – odczytywane z Tabeli. Dla generatorów podawana jest moc znamionowa S_n [MVA] i reaktancja przejściowa $x_d^{"}$ [%]. Użytkownik na podstawie schematu sam wypełnia pozostałe dane patrząc na odpowiednie oznaczenia. W tabelce z danymi węzłów zasilanych z generatorów liczba wierszy jest równa liczbie podanej we wcześniejszym etapie wprowadzania. Wiersze zostały ponumerowane i oznaczone tak jak generatory na schemacie literą G i odpowiednią cyfrą.

Generator	Nr węzła	Moc znamionowa Sn [MVA]	Reaktancja przejsciowa Xd'' [%]	L. generatorów
G1	2	240	18,3	4
G2	5	150	19	2

9. Definiujemy liczbę transformatorów. (**Liczba transformatorów** – odczytywana ze schematu. Transformatory oznaczane są literą T i cyfrą).

😽 Kr	eator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
	Podaj liczbę transformatorów	
	2	
	,—	
	🐴 Bozpocznij od nowa 🛛 🔇 🖉 stecz 📃 Dalej 🔈	🎇 Zamknij

10. Określamy dane transformatorów (**Dane wszystkich transformatorów** – odczytywane z Tabeli i *Schematu układu*. Dla transformatorów podawana jest moc znamionowa pozorna S_n [MVA], straty w miedzi ΔP_{Cu} [kW] i napięcie zwarcia u_{z%} [%]. Użytkownik na podstawie schematu sam wypełnia pozostałe dane patrząc na odpowiednie oznaczenia. W tabelce z danymi transformatorów liczba wierszy jest równa liczbie transformatorów podanej we wcześniejszym etapie wprowadzania. Wiersze zostały ponumerowane i oznaczone tak jak transformatory na schemacie literą T i odpowiednią cyfrą. Użytkownik ze schematu odczytuje numer węzła dla uzwojenia dolnego i górnego napięcia, ilość transformatorów a z Tabeli wartości znamionowe i wpisuje do odpowiedniego wiersza w tabeli zawierającej dane transformatorów.)

🞸 Kre	ator tworzenia	a układu do obliczania ro:	zpływu i parametrów prąd	lu zwarciowego	X
	Podaj dan	e transformatorów	,		
	Transformator	Nr węzła dla uzw. górnego	Nr węzła dla uzw. dolnego	Moc znamionowa pozorna [MVA]	Straty (
	T1	3	2	240	770
	T2	4	5	150	540
	٠ 🗌				+
F	Bozp	ocznij od nowa	< 🖳 stecz	Dalej 🔰 🛛 🌋 Zamk	nij

11. Definiujemy liczbę linii. (**Liczba linii** – odczytywana ze schematu. Oznaczone są literą *L* i cyfrą. Linie dwutorowe traktowane są jako jedna linia).

😝 Kre	ator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
	Podaj liczbę linii	
E		
	3	
t.		
E.		
5		
F	🐴 Bozpocznij od nowa 🔇 🖄 stecz 🛛 Dalej 🔈	🎇 Zamknij

12. Definiujemy dane linii. (**Dane wszystkich linii** – odczytywane z *Tabeli* i *Schematu układu*. Dla linii podawana jest w zależności od typu linii rezystancja jednostkowa R' [Ω /km], reaktancja jednostkowa X' [Ω /km] oraz ich długość I [km] i liczba torów. Użytkownik na podstawie schematu sam wypełnia dane patrząc na odpowiednie oznaczenia. W tabelce z danymi linii liczba wierszy jest równa liczbie linii podanej we wcześniejszym etapie wprowadzania. Wiersze zostały ponumerowane i oznaczone tak jak linie na schemacie literą L i odpowiednią cyfrą. Należy odczytać ze schematu między jakimi węzłami rozprzestrzenia się dana linia i na jakie jest napięcie, z Tabeli wpisać w odpowiedni wiersz jej rezystancję i reaktancję jednostkową oraz podać jej długość i liczbę torów.

🛃 Kr	🖇 Kreator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego 👘 💷 💌					
	•Podaj	dane linii				
	Linia nr	Początek w węźle	Koniec w węźle	Napięcie znamionowe [kV]	Rezystancja jednostkowa [om/km]	Rε
	L1	1	3	220	0,0526	0,4
	L2	1	4	220	0,0526	0,4
	L3	3	6	220	0,0552	0,4
lt.						
F						
	•					F
	<u></u>	<u>R</u> ozpocznij od nowa	• <	Wstecz Dal	ej ≽ 🛛 🎘 Zamknij	

13. Określamy węzeł, w którym jest zwarcie.

🞸 Kreator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
Podaj numer węzła, w którym jest zwarcie	
1	
<u>Bozpocznij od nowa</u> <u>Balej</u> ≥	🔀 Zamknij

14. Definiujemy znamionową wartość napięcia sieci w miejscu zwarcia, odczytywana wartość ze Schematu.

😝 Krea	or tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego 🛛 💷 💻 🌉
	odaj znamionową wartość napięcia sieci w miejscu zwarcia [KV] 220
	Bozpocznij od nowa K Wstecz Dalej

15. Określamy czas trwania zwarcia. Zgodnie z treścią zadania wyznaczyć mamy parametry dla dwóch czasów zwarcia tz = 0,2s oraz tz = 0,7s. Wpisujemy pierwszą wartość.

😝 Kreator tworzenia układu do obliczania rozpływu i parametrów prądu zwarciowego	
Podaj czas trwania zwarcia [s]	
► <u>Rozpocznij od nowa</u>	🎇 Zamknij

16. Wybieramy Oblicz.

17. Wybieramy Otrzymane wyniki.

18. Klikamy na ikonę współczynnik udaru.

	WYNIKI	
	Otrzymane wyniki (dla zwarcia w węźle nr 1):	
Kreator tworzen	Prąd zwarciowy początkowy: $I_k'' = 5,8596$ kA	
-Wybierz	χ - współczynnik udaru odczytany z wykresu	₩.
4	Prąd zwarciowy udarowy: $\vec{l}_p = kA$	Kliknij, aby wyświetlić wykres
	Prąd wyłączeniowy symetryczny: I_{ϕ} = 5,8596 kA	
	m - współczynnik uwzględniający wpływ cieplny składowej nieokresowej prądu zwarciowego odczytany z wykresu m	rądy gałęziowe
	Prąd zwarciowy cieplny: I_{th} = kA	
<u>h</u> Boz	🛜 Zapisz schemat 🐧 🛛 Zapisz wyniki	🖧 🏾 🎘 Zamknij
	🏋 Zam	iknij

19. Na wyświetlonym wykresie dla podanej wartości X/R (pod wykresem) wyznaczamy współczynnik udaru, poprzez kliknięcie najbliższej wartości na osi X (na przykładzie dla X/R = 21,92 współczynnik udaru wynosi 1,86). Po wyznaczeniu współczynnika udaru jednocześnie wyznaczony zostanie prąd zwarciowy udarowy ip oraz prąd wyłączeniowy symetryczny lb.

WYNIKI	
Otrzymane wyniki (dla zwarcia w węźle nr 1):	
Prąd zwarciowy początkowy: $I_k^{"} = 5,8596$ kA	
χ - współczynnik udaru odczytany z wykresu 1,87	*
Prąd zwarciowy udarowy: $i_p = 15,4962$ kA	
Prąd wyłączeniowy symetryczny: I_{g} = 5,8596 k.	А
 m - współczynnik uwzględniający wpływ cieplny składow nieokresowej prądu zwarciowego odczytany z wykres 	vej :u
m <u>t</u>	
Prąd zwarciowy cieplny: I_{th} = kA	
🛐 Zapisz schemat 🛕 🛛 Zapisz wynik	i 🖪
8:	Zamknij

20. Klikamy ikonę współczynnika uwzględniającego wpływ cieplny składowej nieokresowej prądu zwarcia.

or tworzen	
ybierz χ - współczynnik udaru odczytany z	wykresu 1,86
Prąd zwarciowy udarowy: $i_p = 15,4$	133 kA acierz admitancj
. Prąd wyłączeniowy symetryczny: I_{b}	= 5,8596 kA
 m - współczynnik uwzględniający w nieokresowej prądu zwarcioweg m	vpływ cieplny składowej go odczytany z wykresu
Prąd zwarciowy cieplny: I_{th} =	kA
<u>) B</u> oz 🛜 Zapisz schemat 🛕] Zapisz wyniki 👌 🔀 Zamknij

21. Dla przyjętej krzywej 1,9 (wartość krzywej którą należy przyjąć znajduje się pod wykresem) oraz dla czasu zwarcia tz = 0,2s wyznaczamy współczynnik *m*. Po wyznaczeniu współczynnika *m* automatycznie w programie wyznaczony zostanie prąd zwarciowy cieplny *I*_{th}.

22. Zapisujemy uzyskane wyniki.

23. Klikamy Wstecz, cofamy się do punktu 15 i powtarzamy obliczenia dla kolejnego czasu zwarcia (tz = 0,7s) dla rozpatrywanego węzła (powtarzamy czynności od punktu 15 do punktu 22)

24. Powtarzamy obliczenia dla pozostałych węzłów sieci (powtarzamy czynności od punktu 13 do punktu 23).