

Laboratorium 6

Elektroenergetyka

Badanie selektywności zabezpieczeń

Na schemacie wykonanym w ćwiczeniu nr 5 (podstawy obsługi programu EA-PSM) należy dokonać następujących zmian wg poniższego rysunku. Następnie po stronie sieci niskiego napięcia (0,4 kV) należy dodać zabezpieczenia wymienione w tabeli.

Silnik M1: 4A3MO1-400-6000-2Y2 / 6 kV/400 kW/ 2p

L5: N2XSY 1x185/16 6 kV ABC; l = 3 km

Silnik M2: Generic 50Hz/400 V/ 11 kW/2p

Zabezpieczane urządzenie	Typ zabezpieczenia	Model zabezpieczenia
Inv1	Wyłącznik automatyczny	В 13 А
MO	Wyłącznik (QF 1)	Moeller xEnergy LZM1 20 A
M2	Wyłącznik silnikowy (SF 1)	Siemens Sirius 3RV1 3RV10 21 10 A
Ld3	Bezpiecznik – wyłącznik (FU-1)	ETI WT-NH gG 6 A
C1	Bezpiecznik – wyłącznik (FU-1)	ETI WT-NH gG 25 A
U	Zabezpieczenie przeciążeniowe (OLP 1)	Siemens 3RB2036 3Phase 1UW1 24 A

W celu dodania wyłącznika należy kliknąć dwukrotnie na wybranym elemencie który chcemy zabezpieczyć (np. linia, transformator itp.). Następnie zaznaczamy pole "Pozycja wyłącznika" w zależności od tego gdzie chcemy go ulokować.

L-Szyna 2 Właściwości										
Ogólny Szczegóły	Napięcia zn	amionowe	Niez	awodność	Niestandardow					
Pokaż dla wszystkich	składowych	Show resis	stance	matrices						
Nazwa		Custom la	bel							
Rezystancja linii, R					453,616 mΩ					
Reaktancja linii, X					368 mΩ					
Pojemność linii, C					1,624 µF					
Długość										
Temperatura pracy, tc										
Pozycja wyłącznika										
wejście w	yjście									
Pokaż nazwy na schemac	ie 🕜	✓ Pokaż n	azwy	na schema	cie					

Operacje kończymy klikając przycisk "Zastosuj" oraz "OK".

Na wybranym obiekcie pojawia nam się pusty wyłącznik – aby go skonfigurować należy kliknąć dwukrotnie na ikonkę białego prostokąta. Wybraną opcję zabezpieczenia możemy wybrać w zakładce "Zabezpieczenie".

Korzystając z opcji "Śledzenie zabezpieczeń" w zakładce "Optymalizacja" należy wykonać:

1. Pomiary czasu zadziałania zabezpieczenia o parametrach znamionowych podanych w tabeli dla zwarcia <u>K2</u> dla wyłącznika automatycznego na **linii L7.** Symulacja zwarcia w **węźle nr** 7.

Inv1		Wyłącznik automatyczny											
Charakterystyka			, j. g. zznak u atomiat j oznij										
	I [A]	13	16	20	25	32	40	50	63	80	100	125	
В	t min [ms]/[s]												
	t max [ms]/[s]												
С	I [A]	13		20		50		80		100		125	
	t min [ms]/[s]												
	t max [ms]/[s]												
	I [A]	13		20		50		80		100		125	
D	t min [ms]/[s]												
	t max [ms]/[s]												

 Pomiary czasu zadziałania zabezpieczenia o parametrach znamionowych podanych w tabeli dla zwarcia <u>K2</u> dla wyłącznika QF na linii L8. Symulacja zwarcia w węźle nr 8. Należy skorzystać z biblioteki Moeller Energy LZM1.

Uwaga! Przed pomiarami wykonać obliczenia rozruchu dynamicznego silnika

M2	Wyłącznik QF									
I [A]	20	32	50	63	80	100	125	160		
t min [ms]/[s]										
t max [ms]/[s]										

Pomiary czasu zadziałania zabezpieczenia o parametrach znamionowych podanych w tabeli dla zwarcia <u>K2</u> dla bezpiecznika FU na linii L9. Symulacja zwarcia w węźle nr 9 oraz na linii L9 (20 %, 50 %, 80%). Należy skorzystać z biblioteki ETI WT-NH gG

Ld3	Bezpiecznik FU									
I [A]	6	10	16	20	25	35	40			
Szyna t _{min} [ms]/[s]										
Linia 20 % t _{min} [ms]/[s]										
Linia 50 % t _{min} [ms]/[s]										
Linia 80 % t _{min} [ms]/[s]										
Szyna t _{max} [ms]/[s]										
Linia 20 % t _{max} [ms]/[s]										
Linia 50 % t _{max} [ms]/[s]										
Linia 80 % t _{max} [ms]/[s]										
I [A]	50	63	80	100	125	160	200			
Szyna t _{min} [ms]/[s]										
Linia 20 % t _{min} [ms]/[s]										
Linia 50 % t _{min} [ms]/[s]										
Linia 80 % t _{min} [ms]/[s]										
Szyna t _{max} [ms]/[s]										
Linia 20 % t _{max} [ms]/[s]										
Linia 50 % t _{max} [ms]/[s]										
Linia 80 % t _{max} [ms]/[s]										

 Pomiary czasu zadziałania zabezpieczenia o parametrach znamionowych podanych w tabeli dla zwarcia <u>K2</u> dla zabezpieczenia przeciążeniowego **OLP** i bezpiecznika **FU** na linii L10. Symulacja zwarcia w węźle nr 10. Należy skorzystać z biblioteki ETI WT-NH gG

C1	Zabezpieczenie przeciążeniowe OLP/bezpiecznik FU									
I [A]	24	32	40	50	63	80	100	125	160	200
t min [ms]/[s]										
t max [ms]/[s]										

Do sprawozdania należy zamieścić:

- Wykonane pomiary
- Interpretację otrzymanych wyników oraz wnioski